

Inelastic UV Scattering as a new Technique to Investigate Collective Excitations in Condensed Matter Physics

C. Masciovecchio

Elettra Synchrotron, S.S. 14 km 163,5 – 34012 Basovizza, Trieste – Italy

- Inelastic UV Scattering (IUVS) with μeV Energy Resolution
- The Beam-line Design and Construction
- Applications to Condensed Matter Physics and Preliminary Results
- Conclusions

Inelastic UV Scattering with μeV Energy Resolution

Spectral Density of Polarizability Tensor Fluctuations

Spherical Molecules: $I_{VV}(\mathbf{Q}, \omega) = \alpha^2 S(\mathbf{Q}, \omega)$

Density Fluctuation Spectrum

Available probes to investigate collective excitations

Investigations in the Intermediate Region could Shed Light on:

Liquids - Fluids

- Transition from the Hydrodynamic to the Kinetic regime in Simple liquids and fluids.
- Effect of the Local Structure on the Collective Dynamics in Molecular liquids, Associated liquids, and H-bonded liquids with a specific interest in Water and Water Solutions.

Glasses

- Nature of the Vibrational Modes in the Mesoscopic space-time region.
- Relaxational Processes in Super-Cooled liquids and their relation to the Glass Transition.
- Vibrational and Relaxational Low Temperature Properties of Fragile and Strong glasses.

Resonant Scattering (Tunability)

- Low count-rate experiments.
- Determination of Partial Dynamic Structure Factor.
- Transverse Dynamics of the system.

Experimental requirements for IUVS

- Incident Energy in the 5 11(30) eV range $(\lambda \approx 240 110(40)nm)$
- High incident photon Flux on the Sample ($> 10^{-12}$ photons/s)

• High **Resolving Power** ($\approx 10^5 - 10^6$)

$$\omega \approx 10 - 10^3 \ \mu eV$$

$$\omega \approx 10 - 10^3 \ \mu eV$$
 $Q \approx 0.02 - 0.4 \ nm^{-1}$

The Beamline Design and Construction

Linear Undulator?

$$N_{p} = 32$$

$$\lambda = 140 \ mm$$

$$K_{x} = 3.4$$

$$K_{y} = 9.4$$

22 W on first mirror !!

$2 \cdot 10^{15}$ photons/s/0.1% BW ($2 \cdot 10^{12}$ photons/s)

4.5 *m* length, 125 *mm* period, 400 *mA*

2 • 10¹⁵ photons/s/0.1% bandwidth

1.5 kW on the first mirror

The NIM Monochromator

Normal Incidence Monochromator NIM (Czerny-Turner design)

Monochromator & Analyzer design

$$\frac{\Delta E}{E} = \frac{\delta \cdot ctg\theta}{2F} = \frac{50\mu m \cdot ctg(70^{\circ})}{16m} \approx 1.10^{-6}$$

The Beamline

Scanning Resolution: 80 nrad

Autocollimator Control: 50 nrad

Slits Opening: $5 - 12000 \mu m$

Grating Dimensions $420 \times 220 \ mm$

Monochromator Length 8 m

Vacuum: 10⁻⁸ *mbar* (stability)

Temperature Variation: 0.01°C

HEATLOAD MIRROR

The Construction

The Slits

Four independent Blades design

Resolution = parallelism = repeatability : 1 μm Rotation range (resolution): 4 mrad (2 μrad) Translation range (resolution): 50 mm (5 μm)

The Gratings

The Scanning System

Monochromator + Analyzer

Sample Stage

Nanomotion Motors to achieve 1 µrad resolution movement

Detectors

1) **CCD** Thinned Back Illuminated
Chip EEV 4210 13,5 μm pixel size (2048 × 515)
Peltier cooled @ -90°C 1 el/pixel/hour

2) **MCP** coupled to a Resistive Anode 30 μm spatial resolution Single Photon Counter

3) **Photomultiplier**no spatial resolution
Single Photon Counter

The Resolution

Resolution measured using copper scattering

$$\Delta E \approx 2 \cdot 10^{-6}$$

$$E \approx 5 - 11 \text{ eV}$$

Flux
$$\approx 10^{12}$$
 ph/s

Applications to Condensed Matter Physics and Preliminary Results

Glass-Forming Systems

Puzzling properties

Glass-transition mechanism

Relaxation processes

Thermal anomalies

Excess in the vibrational DOS

Knowledge of $C_o, C_\infty, \tau_R(Q), C(Q,T)$

Formulation of Models describing the Glass Transition

Structural Relaxation in Water

First evidence of glassy water: **LDA** (*Burton et al.*, 1936) $T_g \approx 130 K$

Water exhibits very unusual properties:

- Negative volume of melting
- Density maximum in the normal liquid range
- Isothermal compressibility minimum in the normal liquid range
- Increasing liquid fluidity with increasing pressure

Intermolecular forces and

Hydrogen Bond

 $(T \sim 4^{\circ} C)$

Evidence of a relaxation with a characteristic time of $\tau \sim 1 \ ps$

high frequency investigations: **IXS** (*Sette et al.*, PRL 1996, *Monaco et al.*, PRE 1999) low frequency investigations: **Ultrasonic** (*Slie et al.*, JCP1966), **BLS** (*Cunsolo et al.*, JCP1996)

Most Sensible Region
$$\omega_P \tau_R \sim 1$$
 $\tau_{R^{(4^{\circ}C)}} \sim 3 \ ps$ $\omega_R \sim 200 \ \mu eV$

$$\omega_P = \mathbf{v} \cdot Q = \mathbf{v} \cdot \mathbf{n} \cdot 4 \ \pi/\lambda \cdot \sin(\theta/2) \sim 100 - 250 \ \mu eV$$

IUVS first measurements

Water from liquid to undercooled state

- Cell: Fused Silica Fluorescence standard Cell
- Momentum Transfer: $0.9 \ nm^{-1} \ (\lambda = 180 \ nm)$
- Temperature range: -12 → 76 °C

Conclusions

IUVS design started on March 2000. Today the beamline is in its commissioning phase and preliminary results show that it is now possible to perform inelastic scattering experiment in a Momentum-Energy transfer region not *accessible* by other experimental techniques.

The possibility to study disordered systems in the mesoscopic region will shed light on several open problems in the physics of these intriguing systems.

Acknowledgments

- F. Sette, ESRF France
- G. Ruocco, University "La Sapienza" Rome Italy
- D. Cocco, A. Gessini, S. Di Fonzo, ID group, Detector Group, ELETTRA Italy
- S. Santucci, D. Fioretto, University of Perugia Italy